One of the readers in the comments section to the last post noticed Rebecca Warburton trying to clarify that absurd $43-million-per-drug R&D; figure. You’ll find her response in the comments section to the Slate piece that brought this whole study so much attention. Says Warburton:

. . .Our estimate of $59 million is the median development (the “D” in R&D;) cost per average drug, not just NMEs (new chemicals) and does not include basic research costs, for which there is no reasonable estimate available.

But that explanation won’t wash, as some of the readers over at Slate noticed as well. If you read the Light and Warburton article itself, you find the authors talking about nothing but “R&D;” all the way through. In the one section where they do start to make a distinction, they brush aside expenses for basic research, on the grounds that drug companies hardly do any:

Companies under pressure from quarterly reports have difficulty justifying long searches for breakthrough drugs to investors. . .Little company R&D; is devoted to basic research. Although industry association reports, based on unverified numbers from its members, claim that companies invest on average 17–19 per cent of sales in R&D;, the most authoritative data come from the long-standing survey by the US National Science Foundation (2003). Its data document that pharmaceutical firms invest 12.4 per cent of gross domestic sales on R&D.; Of this, 18 per cent, or 2.4 per cent of sales, went to basic research. More detailed reports from the industry indicate the percentage of R&D; going to basic research is even smaller, about 9.3 per cent (or 1.2 per cent of sales) (Light, 2006). Thus the net corporate investment in research to discover important new drugs is about 1.2 per cent of sales, not 17–19 per cent.

So no, claiming that the $43 million figure is only supposed to represent the “D” part of R&D; is disingenuous. There’s another line from this paper, quoting Marcia Angell, that I think gets to one of the roots of the problem with the way these authors have characterized drug research. Angell is quoted here with approval – everything she and Merril Goozner have to say is quoted with approval:

It is also unclear how far back one should go to count up the costs of discovery, given that often there are several strands of research that are pieced together. In Angell’s view, the critical step in ‘discovering’ a new drug is understanding how the disease works and finding one or two good targets of vulnerability in the defences of a disease for intervention. Basic research ‘is almost always carried out at universities or government research labs, either in this country or abroad’ (Angell, 2004, p. 23).

And there you have it. The critical step is understanding how the disease works, you see, and finding one or two good targets. By that definition, the vast amount of money that gets spent in the drug industry is then non-critical. This is a viewpoint that can only be held by someone who has never tried to discover a drug, or never held a serious conversation with anyone who has.

Let’s poke a few holes in that worldview. First off, if we waited to “understand” diseases before trying to develop drugs for them, we’d hardly have a damned thing on the drugstore shelves. Look at Alzheimer’s – the medical community is still having fist-waving arguments about its cause, while drug companies continue to sink piles of money into trying to treat it. (Almost all of which has gone down the tubes, I might add, and I helped flush some of it through myself, earlier in my career).

Then you have to find one or two good targets. Peachy! Where do you find those thingies, anyway? And how do you know that they’re good targets? I wish that Marcia Angell, Donald Light, or Rebecca Warburton would let the rest of us in on those secrets. As it is, we have to take chances on some pretty tenuous stuff, and often the only way to find out if a target really has any connection to human health is to. . .well, to discover a drug candidate that hits it. And develop it, and get it through tox, and into humans, and through Phase I, and into Phase II, and more likely than not these days, into Phase III before you really find out if, you know, it was actually a good target. We pass on those results to the rest of the world at that point. But that doesn’t count as research, apparently.

And how about the drugs that have been developed without good mechanisms or targets at all? Metformin, ezetimibe, rosiglitazone and pioglitazone: none of these had any detailed mechanisms worked out for them while the money was being spent to develop them. These are the sorts of things we do around here in between having meetings to decide what color the package should be, and right after we do that thing where we all jump around in rooms knee-deep in hundred-dollar bills. Exhausting stuff, that money-wading.

But what I’d really like to ask Light and Warburton about is this: if you do think that the Tufts/diMasi estimate is crap, why did you feel as if the antidote was more crap from the opposite direction? Honestly, I’d think that intelligent people of good will might be more interested in decreasing the total amount of crap out there instead. . .

0 Shares:
Leave a Reply

Your email address will not be published. Required fields are marked *